
Generalized Swap Graphs for Blockchain Protocols
Stephan Dübler

Max Planck Institute for Security and Privacy
Bochum, Germany

stephan.duebler@mpi-sp.org

Pedro Moreno-Sanchez
IMDEA Software Institute

Madrid, Spain
pedro.moreno@imdea.org

Clara Schneidewind
Max Planck Institute for Security and Privacy

Bochum, Germany
clara.schneidewind@mpi-sp.org

Abstract—Atomic swaps enable two users holding assets in dif-
ferent cryptocurrencies to safely exchange them without relying
on a trusted third party. Recent works have extended this idea
to swap graphs, describing exchanges of assets between multiple
users that should be executed atomically. In this work, we observe
that the notion of swap graphs can be generalized to describe
a broader class of interesting blockchain protocols, which rely
on atomic transaction execution. Following this observation, we
broaden the class of swap graphs considered in prior work
and define a new protocol for securely realizing such graphs
from more general primitives. The resulting class of graphs
is expressive enough to capture existing multi-party blockchain
protocols such as multi-hop payments and crowdfunding.

Index Terms—blockchain, cryptocurrency, atomic swaps

I. INTRODUCTION

Atomic swap protocols allow two users of blockchain-based
cryptocurrencies to exchange their assets without the need for
a trusted third party while ensuring that (1) if both parties
conform to the protocol, then both swaps take place; and
(2) if a party misbehaves, the honest party does not lose
assets. At its core, an atomic swap is a 2-phase commit
protocol where assets are initially committed with respect to
a cryptographic secret such that they both are released to the
intended receivers if the secret is revealed before a predefined
timeout, or refunded to the initial owners otherwise.

Problem generalization. Previous work [3] extends the notion
of such bilateral swaps to swaps among multiple parties as
described by a strongly connected swap graph (see Fig. 1,
left). We observe that the core of many blockchain protocols
– beyond atomic swaps – consists of the atomic execution of
several transactions. An example are multi-hop payments in
payment channel networks where a payment is routed along
several intermediaries: The protocol security relies on the fact
that either all payments along a path are executed or all
of them are reverted. Such atomic execution is achieved by
a variant of the aforementioned 2-phase commit paradigm:
Funds between users are pairwise locked in an initial setup

A

�� ��
C

>>

,, Bll

UU

A

B

9: 5⃝ 77

C

10: 5⃝gg

A

5: 3⃝ ??

C

7: 4⃝__

A

6: 3⃝ ??

B

8: 4⃝__

A

1: 1⃝ ??

B

3: 2⃝__

A

2: 1⃝ ??

C

4: 2⃝__

Fig. 1. Swap graph (left) and corresponding swap tree (right).

Swap
Graphs

Swap
Trees

BitML
Semantics

Operational
Semantics

Isomorphism Realization Conformance

Fig. 2. Overview of the Approach

phase and configured such that they can only be released
with the knowledge of a specific cryptographic secret. During
the release phase, the parties learn the secrets required for
retrieving their funds as soon as the previously locked assets
are taken away from them.

Motivated by these common principles, we generalize the
concept of swap graphs to be sufficiently expressive for cap-
turing a broader class of protocols such as multi-hop payments
in payment channel networks [5], rebalancing [4], and crowd-
funding [6]. To this end, we show how to broaden the class of
swap graphs beyond strongly connected ones. Next, we give a
new protocol for realizing generalized swap graphs based on
general primitives supported by most cryptocurrencies.
Protocol generalization. The swap graph protocol in [3]
is based on a specific form of hashed timelock contracts
(HTLCs). Assets deposited in an HTLC with parameters A,
B, Y and t can either (1) be released by user A by publicly
revealing a secret x such that H(x) = Y or (2) released to
user B after time t. In [3] a more powerful version of this
contract is used that operates on a vector Y⃗ of hash values
and a vector t⃗ of timelocks and ensures that money locked in
such contract can only be released by user A if all secrets xi

corresponding to Yi ∈ Y⃗ have been released before time ti.
In contrast to standard HTLCs, the version used in [3]

is inherently stateful and as such cannot be implemented in
Bitcoin-like currencies, which only support stateless contracts.

We define a new protocol for generalized swap graphs that
is built upon a more general primitive and, hence, is not tied
to cryptocurrencies with stateful contracts. To this end, we
define the notion of conditioned timelock contracts (CTLCs):
A CTLC is a generalization of a standard HTLC in that (i) it
supports cryptographic conditions given by hard relations and
not only hash functions; and (ii) instead of releasing the funds
to party A or B, the funds can be released into a follow-up
CTLC contract. We argue that CTLCs do not only subsume
HTLCs but can even be implemented in cryptocurrencies
without any contract support; using ideas presented in [6].
Protocol correctness and security. For proving the new
protocol correct and secure, we follow the steps in Fig. 2:
We describe the protocol using a tree structure (swap tree)



derived from the swap graph. The correspondence between
these structures can be shown by a topological isomorphism.
For defining the protocol, we associate the edges of a swap
tree with CTLCs and define the setup and execution of these
CTLCs based on the swap tree. For formally proving the
resulting protocol secure, we define an operational semantics
for CTLCs. We validate these semantics against a realistic
blockchain transaction execution model by showing them to
coincide with those of a fragment of BitML [2] – a language
for Bitcoin smart contracts, which is proven sound with respect
to a computational model of Bitcoin transaction execution.

Constructions and proofs in this paper are work in progress.

II. SWAP GRAPH PROTOCOL

Preliminaries. A swap graph is formally given by a directed
graph (or just digraph), which consists of vertices and arcs.
Here, vertices resemble the (assets of) participating parties and
arcs desired transactions1. Two nodes are connected if there
exists an arc between them and we call a sequence of arcs
a walk. A digraph is strongly connected if, for every two
vertices, there exist connecting walks in both directions. If
there is a vertex A in the digraph that can be reached starting
from every other node we call the graph in-semiconnected w.r.t.
A. In-semiconnectedness will be our minimum requirement
for converting a swap graph into a swap tree. Note that every
strongly connected digraph is in-semiconnected w.r.t. every
node. The formal definitions are deferred to Appendix A.
When referring to swap trees, we will use the notions edges
and nodes instead of arcs and vertices.

We will assume CTLCs to rely on a hard relation R
with statement/witness pairs (Y, x), which supports dis-
tributive composition operations · and + such for all
(Y1, x1), (Y2, x2) ∈ R it holds that (Y1 ∗ Y2, x1 + x2) ∈ R.
Here, we will call statements conditions and witnesses secrets.
Graph-to-tree conversion. Every digraph that is in-
semiconnected w.r.t. a leader A can be unfolded into a swap
tree by choosing A as a root and connecting all ingoing arcs
including their tails. This procedure gets repeated until there
are no more ingoing arcs or the current vertex has appeared
twice on its walk up to the leader. Given the digraph from
Fig. 1 we can choose any vertex as the leader. Choosing A
results in the tree on the right. Note that multiple edges in the
tree may correspond to a single arc of the swap graph and
hence to the same asset (e.g., edges 1 and 6).
Protocol description. Based on this tree and the CTLC
primitive, we define a three-phase protocol: First, all partici-
pants create secret/condition pairs from R and exchange their
statements. Each edge in the tree will correspond to a CTLC
with a condition that can be opened with the knowledge of a
(composition of) secret(s). The secret for the CTLC of an edge
U → V in the tree is composed of all secrets of the parent
edge as well as a fresh secret vi of party V . The secrets for
the example in Fig. 1 are shown in Table I where secrets

1For the sake of presentation, we assume here that each party trades exactly
one asset and use parties and their assets synonymously.

TABLE I
CTLC PARAMETERS PER TREE EDGE.

No. Creation order Involved parties Timelock Secrets
1 1⃝ A → C t0 + 3∆ a1, b2, c1
2 1⃝ A → B t0 + 3∆ a2, c4, b3
3 2⃝ B → C t0 + 3∆ a1, b2, c2
4 2⃝ C → B t0 + 3∆ a2, c4, b4
5 3⃝ A → B t0 + 2∆ a1, b1
6 3⃝ A → C t0 + 2∆ a2, c3
7 4⃝ C → B t0 + 2∆ a1, b2
8 4⃝ B → C t0 + 2∆ a2, c4
9 5⃝ B → A t0 + 1∆ a1
10 5⃝ C → A t0 + 1∆ a2

of party U are denoted ui. Second, the users set up CTLCs
corresponding to the tree edges starting from the leaves up to
the root. The timelocks for the CTLCs are derived from the
level of the edge in the tree relative to the protocol starting
time t0. Edges in the tree that spend the same asset are locked
into a nested CTLC. By the setup order, we ensure that users
can never lose funds due to an inconsistent setup: Whenever a
user U sets up a CTLC for an outgoing arc at node n either (i)
ingoing edges of n are already set up to enable U to acquire all
funds they may receive during the swap or (ii) there is another
occurrence of U on the path of n to the root and hence U can
prevent the execution from reaching n2.

Once all transactions have been set up, the release phase
starts at time t0. Due to the way that the secrets have been
chosen, the CTLC for an edge can be triggered once its parent
edge has been triggered. For instance, as soon as party A
triggers the CTLC of edge 9, the secret a1 is revealed to
B what allows B to trigger the CTLCs of edges 5 and 7.
Furthermore, the increasing timelocks guarantee that whenever
the CTLC for an outgoing edge has been pulled from a node
there is enough time remaining for it to pull its ingoing ones.

Protocol analysis. We can show that swap trees correctly and
securely realize their underlying swap graphs by proving an
isomorphism of topological spaces between the two structures.
Based on this isomorphism, we can show that (1) if all parties
follow the protocol all arcs of the swap graph get executed
(correctness) (2) no honest party may be left worse off than
in an honest swap execution (security). Our security notion
relaxes the one of [3] which requires honest parties to never
end up underwater – a situation where assets of the party
are claimed without the party receiving all assets as indicated
by the swap. This is needed as in non-strongly-connected
swap graphs (e.g. multi-hop payments) an honest swap graph
execution may require participants to come out underwater.

To formally prove that the protocol execution follows the
tree structure when being implemented using CTLCs, we give
an operational semantics for CTLCs. These CTLC semantics
coincides with a fragment of the BitML language [2] for
Bitcoin smart contracts, and hence showcases that swap graphs
can be provable realized upon Bitcoin-like cryptocurrencies.

2This only holds for strongly-connected graphs. Achieving a safe setup for
other graphs requires additional secrets as we detail in Appendix B.



Applications and Outlook. As outlined in the previous
section, we can give a formal proof showing that our novel
protocol can be realized in Bitcoin. However, the generality of
the underlying CTLC primitive allows for the usage of swap
graphs to describe protocols that not only span different cryp-
tocurrencies but may even operate on layer-2 infrastructure
like payment channel networks. To substantiate this claim, in
future work, we want to draw a formal connection between
the proposed CTLC semantics and these systems.

REFERENCES

[1] Jørgen Bang-Jensen and Gregory Gutin. Classes of directed graphs,
volume 11. Springer, 2018.

[2] Massimo Bartoletti and Roberto Zunino. Bitml: a calculus for bitcoin
smart contracts. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, pages 83–100, 2018.

[3] Maurice Herlihy. Atomic cross-chain swaps. In Proceedings of the 2018
ACM symposium on principles of distributed computing, pages 245–254,
2018.

[4] Rami Khalil and Arthur Gervais. Revive: Rebalancing off-blockchain
payment networks. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, pages 439–453, 2017.

[5] Giulio Malavolta, Pedro Moreno-Sanchez, Clara Schneidewind, Aniket
Kate, and Matteo Maffei. Anonymous multi-hop locks for blockchain
scalability and interoperability. In 26th Annual Network and Distributed
System Security Symposium, NDSS 2019, 2019.

[6] Sri AravindaKrishnan Thyagarajan, Giulio Malavolta, and Pedro Moreno-
Sanchez. Universal atomic swaps: Secure exchange of coins across all
blockchains. In 2022 IEEE Symposium on Security and Privacy (SP),
pages 1299–1316. IEEE, 2022.

APPENDIX

A. Graphtheory

Definition A.1. A directed graph (or just digraph) D consists
of a non-empty finite set N of vertices or nodes and a finite
set A of ordered pairs of distinct vertices called arcs. We call
N the vertex set or set of nodes and A the set of arcs, D is
then defined as D := (N,A). For an arc (A,B) ∈ A we call
A its tail, B its head. Two nodes A,B ∈ N are connected if
there exists an arc (A,B) ∈ A or (B,A) ∈ A, which will be
denoted with A → B or B → A respectively. Also, requiring
the two vertices forming an arc to be distinct removes loops
from one node back to itself from the set of arcs [1, p.3].

Definition A.2. A walk in D = (N,A) is an alternating
sequence W := A1a1A2a2A3...Ak−1ak−1Ak of Ai ∈ N
and aj ∈ A such that Ai and Ai+1 are end-vertices of ai
for every i ∈ {1, 2, ..., k − 1}, k ≥ 2. Furthermore, if Ai

and Ai+1 are the tail and head of ai respectively, for every
i ∈ {1, 2, ..., k−1}, then W is called a directed walk or diwalk.
We say that W is a diwalk from A1 to Ak or an (A1, Ak)-
diwalk [1, p.7].

Definition A.3. D = (N,A) is strongly connected if

∀A,B ∈ N : ∃ (A,B)-diwalk ∧ ∃ (B,A)-diwalk [1, p.7].

Definition A.4. Let A ∈ N be an arbitrarily chosen vertex
from D, then we define the reachable set of A as

ND(A) := {C ∈ N \ {A} | ∃ (C,A)-diwalk} [1, p.16].

Definition A.5. Let D = (N,A) be a digraph and A ∈ N.
Then we call D in-semiconnected w.r.t. A if and only if

ND(A) ∪ {A} = N.

B. Setup for in-semiconnected digraphs

When the swap graph is not strongly connected but only in-
semiconnected w.r.t. a leader the situation can come up where
a party A only appears in a leaf and not another time further
up in the tree. This is problematic as it is possible that only A
sets up its outgoing transaction but the other participants are
not. In this case, A would be discontent with the outcome. For
instance in a Multi-Hop Payment like the one in Fig. 3 where
A wants to pay C through an intermediary B the party A only
wants to set up its CTLC if it can guarantee that the funds get
forwarded to C. Here digraph and tree coincide with C being
the leader. We can prevent undesired outcomes by adding a

A
a,b,c // B

a,c // C

Fig. 3. Multi-Hop Payment

secret a of A to all CTLCs, which can be revealed by A
between the setup and execution phase. This mechanism is
only part of the protocol if the graph is not strongly connected,
as it makes for another party which could potentially delay the
execution.


