
BitMLx– Cross-chain Smart Contracts for
Bitcoin-style Cryptocurrencies (Work in Progress)

Abstract—The limited scripting capabilities in Bitcoin-like
cryptocurrencies have forced implementations of smart con-
tracts as multi-party cryptographic protocols. To streamline this
process, the BitML language allows for defining simple smart
contracts and automatically translates them into protocols over
transactions in the respective currency. However, BitML is limited
to contracts operating upon the same cryptocurrency whereas
many interesting financial applications involve assets on different
blockchains, inducing more complicated cryptographic proto-
cols for enforcing synchronous execution across these systems.
In this work, we introduce BitMLx, an extension of BitML
that provides a high-level programming language to implement
smart contracts executing synchronously on any two Bitcoin-like
cryptocurrencies. We provide a compiler from BitMLx to two
BitML contracts and formally prove that participants executing
the latter contracts end up at least as good as in the corresponding
execution of the former BitMLx contract.

Index Terms—smart contracts, Bitcoin, cross-chain, compiler

I. INTRODUCTION

Smart contracts are programs controlling cryptocurrency
assets and serve as trustless implementations of many financial
applications, such as escrow services or lotteries. While some
cryptocurrencies (like Ethereum) support a (quasi) Turing-
complete language, Bitcoin (and similar cryptocurrencies)
support only very limited scripting capabilities to express
conditions on how individual coins can be spent. Despite
that, there exist many examples [2]–[5], [7]–[11] of Bitcoin-
compatible smart contracts designed as multi-party crypto-
graphic protocols where conditions to spend the participants’
coins are carefully intertwined to realize the logic of the
contract. A more principled way for designing such protocols
is provided by BitML [1], a high-level programming language
for smart contracts that can be compiled to protocols over
Bitcoin transactions with formal soundness guarantees.

In practice, many interesting financial applications involve
assets in different cryptocurrencies. However, synchronizing
the execution of smart contracts across several blockchains is
notoriously hard since one cannot rely on the synchronicity of
the consensus mechanism underlying the individual cryptocur-
rencies. Instead, the protocol parties need to synchronize their
actions by cryptographic means, resulting in inherent fairness
issues known from secure multi-party computation [6]. These
limitations need to be overcome with carefully crafted financial
incentives, a factor that substantially complicates the design of
secure contracts.

To address this challenge, we introduce BitMLx, an ex-
tension of BitML, which models contracts executing syn-
chronously on any two cryptocurrencies that support Bitcoin-

like scripting. We give a formal semantics for BitMLx and pro-
vide a translation to concurrently executing BitML contracts.
We prove the translation correct, showing that honest users
interacting with the compiled BitML contracts can always
enforce an execution that ensures an outcome as good as the
corresponding execution of the original BitMLx contract.

II. BACKGROUND

A BitML contract governs the deposits of the contract
parties according to the rules of a simple process calculus.
In the following, we will introduce the main components of
this process calculus using examples.

Consider a scenario where a user A holding 10 bitcoins
(B) and a user B holding 10 dogecoins (D) wish to exchange
their assets. To do so, they deposit their assets into BitML
smart contracts {A :!10B}SwapB on Bitcoin and {B :
!10D}SwapD on Dogecoin. The preconditions {A :!10B}
and {B :!10D} denote the deposits made by the parties and
the codes SwapB and SwapD describe the contract logic. A
first attempt at implementing the contract codes could look as
follows:

RefundB = after t : withdraw A

SwapB = A : withdraw B +RefundB

RefundD = after t : withdraw B

SwapD = B : withdraw A+RefundD

The definition of SwapB indicates a choice (+) between
two actions: either (i) upon authorization from A, B can
withdraw all assets in the contract (here 10B) or (ii) after time
t, A can withdraw the contract assets. The contract SwapB
is defined symmetrically. While these contracts allow parties
A and B to safely deposit their assets on the corresponding
blockchain and to retrieve them back in case the other party
does not do the same, they are still left with a coordination
problem: Whoever authorizes the transfer of their assets first
has no guarantee that the other party will do the same and not
just wait till time t to also claim back their own assets.

To solve this problem, the contract could use a trusted
intermediary C who will authorize both transfers simulta-
neously, for a small fee. For example, we could replace
A : withdraw B with the following EscrowB contract
(and analogously for the Dogecoin case):

EscrowB = C : split(9B → withdraw B,

1B → withdraw C)

EscrowB encodes that with C’s authorization, the funds
are split into two independent contracts, one where B gets 9B,



and one where C gets 1B. A rational C will synchronize the
execution of SwapB and SwapD and even if C is offline, A
and B can retrieve back their assets.

This security argument, however, relies on the existence of
a rational third party C and the payment of a fee. In the
following, we show how to achieve the synchronous execution
of BitML-style smart contracts across different blockchains
without the need for fees and a synchronizing party.

III. SOLUTION OVERVIEW

We introduce BitMLx, a language for writing smart con-
tracts that simultaneously govern assets in two Bitcoin-like
cryptocurrencies. BitMLx closely resembles BitML and comes
with an operational semantics for the ideal synchronous con-
tract execution. To realize that, we translate BitMLx contracts
into two BitML contracts to be executed in parallel on the re-
spective blockchains. Finally, we prove a correctness statement
relating the concurrent execution of the compiled contracts
with the ideal execution of the original BitMLx contract.
The BitMLx language. We overview the BitMLx features
with the asset swap example. Participants deposit their coins
into a contract {A :!(10B, 0D) | B :!(0B, 10D)}Swapx, where

Exchange = split((0B, 10D) → withdraw A,

(10B, 0D) → withdraw B)

Refund = split((10B, 0D) → withdraw A,

(0B, 10D) → withdraw B)

Swapx = Exchange +> Refund

Similar to BitML, the split primitive splits the contract
into two independent instances, each with its own funds. The
key difference being that, in BitMLx, deposits are extended
to tuples on both currencies, which allows us to express that,
simultaneously, in one branch one participant takes all bitcoins
while on the other, the other participant takes all dogecoins.

On the top level, the Swapx contract exposes a priority
choice (represented by the +> operator) indicating that the
execution of the Exchange contract has priority over the
Refund contract. BitMLx features priority choices (as op-
posed to a normal choice operator) to ensure a predictable
execution behavior of the contract, which is a prerequisite for
a synchronous execution across blockchains. Participants in
a BitMLx contract are additionally required to deposit extra
funds that will not intervene into the contract logic, but func-
tion as collateral to secure the synchronization mechanism.
The necessary collateral can be computed from the contract’s
deposits and number of participants.
Compilation. BitMLx contracts are compiled to a pair of
BitML contracts in the respective target blockchains, and
funded with the deposits and the collateral from each par-
ticipant. The control flow of the compiled contracts is tied
by a mechanism of timed commitments and punishments to
encourage that any time a participant takes an action on one
blockchain, they replicate it on the other. Whenever progress is
not replicated, the participant responsible for the asymmetrical

split

split

split

split

Fig. 1: Bitcoin compilation of Swapx.

split

split

split

split

Fig. 2: Dogecoin compilation of Swapx.

behavior is forced to pay compensation to potentially harmed
participants by splitting their collateral among them.

In Figs. 1 and 2, we depict the BitML contracts resulting
from the compilation of Swapx and highlight the case (in
green) where A tries to go for the exchange on the Dogecoin
blockchain but, also tries to get a refund on the Bitcoin
blockchain. To do so, A needs to reveal their own special
secret SD

A that they committed to before starting the execution.
Revealing this secret is a condition for A to take the left
side of the Dogecoin contract and serves as proof of A
making that step. In the Bitcoin contract (Fig. 1), after time
t0, B can use this same secret to punish A (indicated by
Punish A). To ensure that B has sufficient time for doing
so, the Refund contract will only be enabled after t1 > t0.
During the punishment, B is rewarded the whole contract
balance (10B) ensuring that the asynchronous execution is
as rewarding for B as the synchronous one. If the contract
would involve more users, A’s collateral would be used to
pay them a corresponding compensation (covering the whole
contract balance). In synchronous executions, such collateral
is returned to the owner.
Correctness. To establish the correctness of the compilation,
we show the following statement (here informal):

Theorem (Compiler correctness, informal). Each strategy of
an honest user A on a BitMLx contract C translates into
a strategy on the concurrently executing compiled BitML
contracts CB | CD that allows A to extract at least as many
assets from CB | CD as from C with the original strategy.

Intuitively, this theorem states that users interacting with
the concurrently executing BitML contracts resulting from the
compilation can always achieve results at least as beneficial
as the ones resulting from the interaction with the original
BitMLx contract according to the synchronous semantics.



REFERENCES

[1] Nicola Atzei, Massimo Bartoletti, Stefano Lande, and Roberto Zunino.
A formal model of bitcoin transactions. In Financial Cryptography and
Data Security: 22nd International Conference, FC 2018, Nieuwpoort,
Curaçao, February 26–March 2, 2018, Revised Selected Papers 22,
pages 541–560. Springer, 2018.

[2] Lukas Aumayr, Oguzhan Ersoy, Andreas Erwig, Sebastian Faust,
Kristina Hostáková, Matteo Maffei, Pedro Moreno-Sanchez, and Siavash
Riahi. Generalized channels from limited blockchain scripts and adaptor
signatures. In 27th International Conference on the Theory and Appli-
cation of Cryptology and Information Security, 2021.

[3] Lukas Aumayr, Matteo Maffei, Oguzhan Ersoy, Andreas Erwig, Se-
bastian Faust, Siavash Riahi, Kristina Hostáková, and Pedro Moreno-
Sanchez. Bitcoin-compatible virtual channels. In 42nd IEEE Symposium
on Security and Privacy, SP 2021.

[4] Lukas Aumayr, Pedro Moreno-Sanchez, Aniket Kate, and Matteo Maf-
fei. Breaking and fixing virtual channels: Domino attack and donner. In
Annual Network and Distributed System Security Symposium, 2023.

[5] Lukas Aumayr, Sri Aravinda Krishnan Thyagarajan, Giulio Malavolta,
Pedro Moreno-Sanchez, and Matteo Maffei. Sleepy channels: Bi-
directional payment channels without watchtowers. In Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications
Security,, pages 179–192.

[6] Richard Cleve. Limits on the security of coin flips when half the
processors are faulty. In Proceedings of the eighteenth annual ACM
symposium on Theory of computing, pages 364–369, 1986.

[7] Oguzhan Ersoy, Pedro Moreno-Sanchez, and Stefanie Roos. Get me out
of this payment! bailout: An htlc re-routing protocol. Cryptology ePrint
Archive, Paper 2022/958, 2022. https://eprint.iacr.org/2022/958.

[8] Noemi Glaeser, Matteo Maffei, Giulio Malavolta, Pedro Moreno-
Sanchez, Erkan Tairi, and Sri Aravinda Krishnan Thyagarajan. Founda-
tions of coin mixing services. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security, pages 1259–
1273.

[9] Philipp Hoenisch, Subhra Mazumdar, Pedro Moreno-Sanchez, and Sush-
mita Ruj. Lightswap: An atomic swap does not require timeouts at
both blockchains. In Data Privacy Management, Cryptocurrencies and
Blockchain Technology - ESORICS 2022 International Workshops, DPM
2022 and CBT 2022,.

[10] Varun Madathil, Sri Aravinda Krishnan Thyagarajan, Dimitrios
Vasilopoulos, Lloyd Fournier, Giulio Malavolta, and Pedro Moreno-
Sanchez. Cryptographic oracle-based conditional payments. In Annual
Network and Distributed System Security Symposium, 2023.

[11] Sri Aravinda Krishnan Thyagarajan, Giulio Malavolta, and Pedro
Moreno-Sanchez. Universal atomic swaps: Secure exchange of coins
across all blockchains. In 43rd IEEE Symposium on Security and
Privacy, SP 2022.


